1012. Proposed by George Apostolopoulos, Messolonghi, Greece.

Let *ABC* denote a triangle, *I* its incenter, *s* its semiperimeter, and R_a , R_b , and R_c the circumradii of triangles *IBC*, *ICA*, and *IAB*, respectively. Prove that

(a)
$$\frac{a}{R_a} + \frac{b}{R_b} + \frac{c}{R_c} \le 3\sqrt{3}$$
, and
(b) $R_a + R_b + R_c \ge \frac{2s\sqrt{3}}{2}$

Solution by Arkady Alt , San Jose , California, USA.

Since $\sin \angle BIC = \pi - \frac{B+C}{2} = \frac{\pi + A}{2}$ then applying Sin-Theorem to triangle *IBC* we obtain $\frac{BC}{\sin \angle BIC} = 2R_a \Leftrightarrow \frac{a}{\sin \frac{\pi + A}{2}} = 2R_a \Leftrightarrow R_a = \frac{a}{2\cos \frac{A}{2}} \Leftrightarrow R_a = 2R\sin \frac{A}{2}$. Therefore, $\sum_{cyc} \frac{a}{R_a} \le 3\sqrt{3} \Leftrightarrow \sum_{cyc} \cos \frac{A}{2} \le \frac{3\sqrt{3}}{2}$ and, since $s = 4R \prod_{cyc} \cos \frac{A}{2}$, we obtain $\sum_{cyc} R_a \ge \frac{2s\sqrt{3}}{3} \Leftrightarrow \sum_{cyc} 2R\sin \frac{A}{2} \ge \frac{2}{\sqrt{3}} \cdot 4R \prod_{cyc} \cos \frac{A}{2} \Leftrightarrow \sum_{cyc} \sin \frac{A}{2} \ge \frac{4}{\sqrt{3}} \prod_{cyc} \cos \frac{A}{2}$. Let $\alpha := \frac{\pi - A}{2}$, $\beta := \frac{\pi - B}{2}$, $\gamma := \frac{\pi - C}{2}$ then $\frac{A}{2} = \frac{\pi}{2} - \alpha$, $\frac{B}{2} = \frac{\pi}{2} - \beta$, $\frac{c}{2} = \frac{\pi}{2} - \gamma$, where $\alpha, \beta, \gamma \in (0, \frac{\pi}{2})$ and $\alpha + \beta + \gamma = \pi$. Therefore, inequality (a) and (b), respectively, equivalent to

(1) $\sin \alpha + \sin \beta + \sin \gamma \le \frac{3\sqrt{3}}{2}$ and (2) $\cos \alpha + \cos \beta + \cos \gamma \ge \frac{4}{\sqrt{3}} \sin \alpha \sin \beta \sin \gamma$.

Proof of (1).

Since
$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \le 2 \sin \frac{\alpha + \beta}{2} = 2 \cos \frac{\gamma}{2}$$
 then
 $\sin \alpha + \sin \beta + \sin \gamma \le 2 \cos \frac{\gamma}{2} + 2 \sin \frac{\gamma}{2} \cos \frac{\gamma}{2} = 2 \cos \frac{\gamma}{2} \left(1 + \sin \frac{\gamma}{2}\right) = 2\left(1 + \sin \frac{\gamma}{2}\right) \sqrt{1 - \sin^2 \frac{\gamma}{2}} = 2\sqrt{(1 - t)(1 + t)^3}$, where $t = \sin \frac{\gamma}{2}$.
By AM-GM Inequality $(1 - t)(1 + t)^3 = \frac{(3 - 3t)(1 + t)^3}{2} \le \frac{1}{2} \left(\frac{3 - 3t + 3 + 3t}{2}\right)^4 = \frac{3^3}{2}$.

By AM-GM Inequality $(1-t)(1+t)^3 = \frac{(3-3t)(1+t)^3}{3} \le \frac{1}{3}\left(\frac{3-3t+3+3t}{4}\right)^4 = \frac{3^3}{2^4}$. Hence, $\sin \alpha + \sin \beta + \sin \gamma \le 2\sqrt{\frac{3^3}{2^4}} = \frac{3\sqrt{3}}{2}$.

(Or another way to prove (1):

Since $\sin x$ is concave down on $(0, \pi)$ then, by Jensen Inequality, we obtain $\frac{\sin \alpha + \sin \beta + \sin \gamma}{3} \le \sin \frac{\alpha + \beta + \gamma}{3} = \sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$ Proof of (2).

Consider some triangle (acute) with angles α , β , γ . We will use regular notation for metric elements of this triangle, namely, let *a*, *b*, *c* be sidelengths of this triangle and *s*, *R*, *r* be it's semiperimeter, circumradius, inradius, respectively.

(don't mix them with notation of correspondent elements in original triangle). Since $\cos \alpha + \cos \beta + \cos \gamma = 1 + \frac{r}{R}$ and $\sin \alpha \sin \beta \sin \gamma = \frac{abc}{8R^3} = \frac{4Rrs}{8R^3} = \frac{rs}{2R^2}$ then $(2) \Leftrightarrow 1 + \frac{r}{R} \ge \frac{4}{\sqrt{3}} \cdot \frac{rs}{2R^2} \Leftrightarrow 1 + \frac{r}{R} \ge \frac{2rs}{R^2\sqrt{3}} \Leftrightarrow 2rs \le \sqrt{3}R(R+r).$ Note that $\sin \alpha + \sin \beta + \sin \gamma \le \frac{3\sqrt{3}}{2} \Leftrightarrow s \le \frac{3\sqrt{3}}{2}R$. Since $2rs \le 3\sqrt{3}Rr$ and $3\sqrt{3}Rr \le \sqrt{3}R(R+r) \Leftrightarrow 3r \le R+r \Leftrightarrow 2r \le R$ (Euler Inequality) then $2rs \le \sqrt{3}R(R+r)$ and that complete the proof.